

Cornell University

Few-Shot Classification:

Generalize to novel classes using very few images per novel class

Train / Support examples

Abstract:

Reformulate few-shot classification as latent space reconstruction

- > Approximate query features as weighted sums of support features; assign class based on reconstruction quality
- Simple, closed-formed ridge regression is more performant and efficient than previous approaches
- Across-the-board superiority on four fine-grained datasets and the cross-domain setup
- Competitive results on mini-ImageNet and tiered-ImageNet with minimal bells and whistles

Our Method:

- 1. Extract feature maps from support images
- 2. Concatenate into class feature pools
- 3. Reconstruct query feature map as a weighted sum over each pool
- 4. Same-class images with semantic overlap should provide the best reconstruction
- 5. Predict based on reconstruction quality

Few-shot Classification with Feature Map Reconstruction Networks

Davis Wertheimer*, Luming Tang*, Bharath Hariharan (*equal contribution)

Test / Query examples

Query Image

Calculating Reconstructions:

Given k support features for class y and b query features for image x in d dimensions, i.e.,

 $S \in \mathbb{R}^{k \times d}$ $Q \in \mathbb{R}^{b \times d}$

We wish to find \overline{W} such that:

 $\overline{W}S \approx Q$

Solve with ridge regression and learned regularization:

$$\overline{W} = \underset{W}{\operatorname{argmin}} \| WS - Q$$

The closed-form solution is well-known:

 $\overline{W} = Q(S^T S + \lambda I)^{-1} S^T$

Prediction probability is proportional to the reconstruction quality:

 $p(y|x) \propto \exp(-\|\overline{W}S - Q\|^2)$

Comparison to Related Prior Work:

Prior work also compares feature maps via weighted-sum reconstruction, but there are problems:

- CrossTransformer (CTX) refines category predictions via attention: • Constrained: positive-valued weight matrix, rows sum to 1 Reprojection involves many additional parameters • Time/memory quadratic in the number of features
- DeepEMD compares feature pools via transport cost:
- Constrained: positive-valued weight matrix, rows and columns sum to 1
- Transport cost requires *very* slow iterative solvers, i.e., *image pairs only*

FRN avoids these issues, being expressive, lightweight, and scalable

Model	No hard constraints on reconstruction	Very few new learned parameters	Scales well with number of features
CTX	×	X	X
DeepEMD	×	✓	×
FRN (ours)	\checkmark	\checkmark	\checkmark

 $W \in \mathbb{R}^{b \times k}$

- $Q \|^2 + \lambda \|W\|^2$

Results:

Image decoders	Target:
verify that	Autoencode:
same-class	
reconstructions	Same class:
really are better!	Diff class:
	Diff class:

Diff class:

