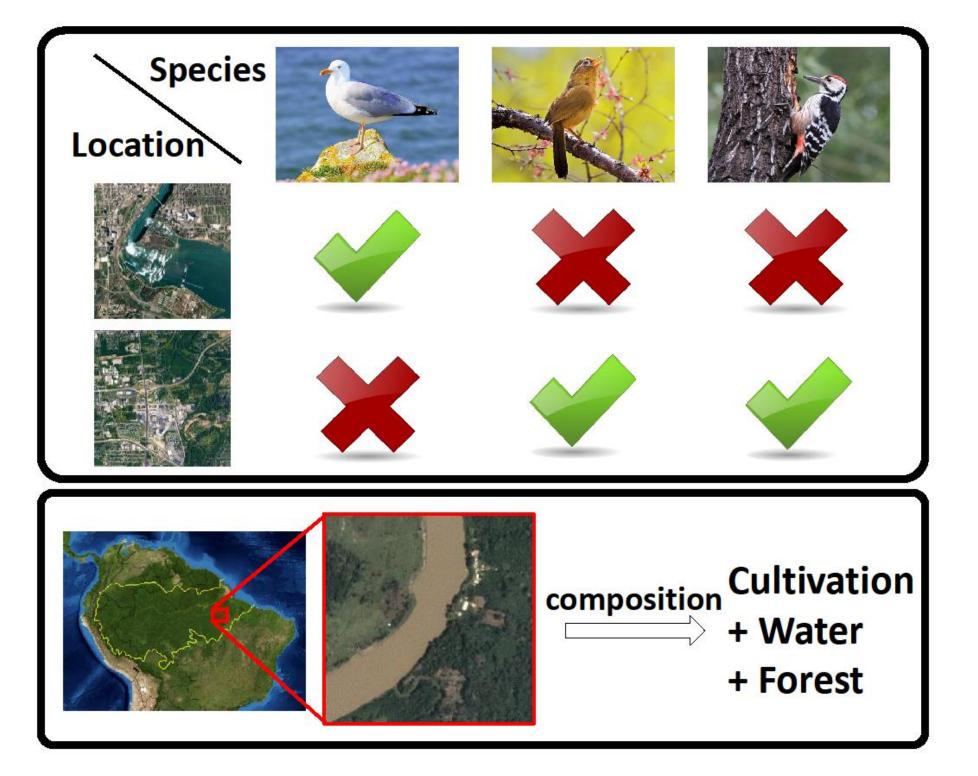


Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder

Luming Tang^{2*}, Yexiang Xue^{1*}, Di Chen¹, Carla P. Gomes¹ ¹Cornell University; ²Tsinghua University; * indicates equal contribution

Introduction

Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. We propose MEDL_ CVAE, which encodes a conditional multivariate distribution as a generating process. The variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs.



We turn to maximizing the variational lower bound of original log likelihood:

$$Q(z_i|x_i, y_i) = N(\mu_e(x_i, y_i), \Sigma_e(x_i, y_i)).$$

$$\max_{\theta_d, \theta_e} \sum_i \mathbb{E}_{z_i \sim Q(z_i|x_i, y_i)} \left[\log Pr(y_i|z_i, x_i)\right] - D\left[Q(z_i|x_i, y_i)||Pr(z_i|x_i)\right].$$

(a) Training of MEDL_CVAE

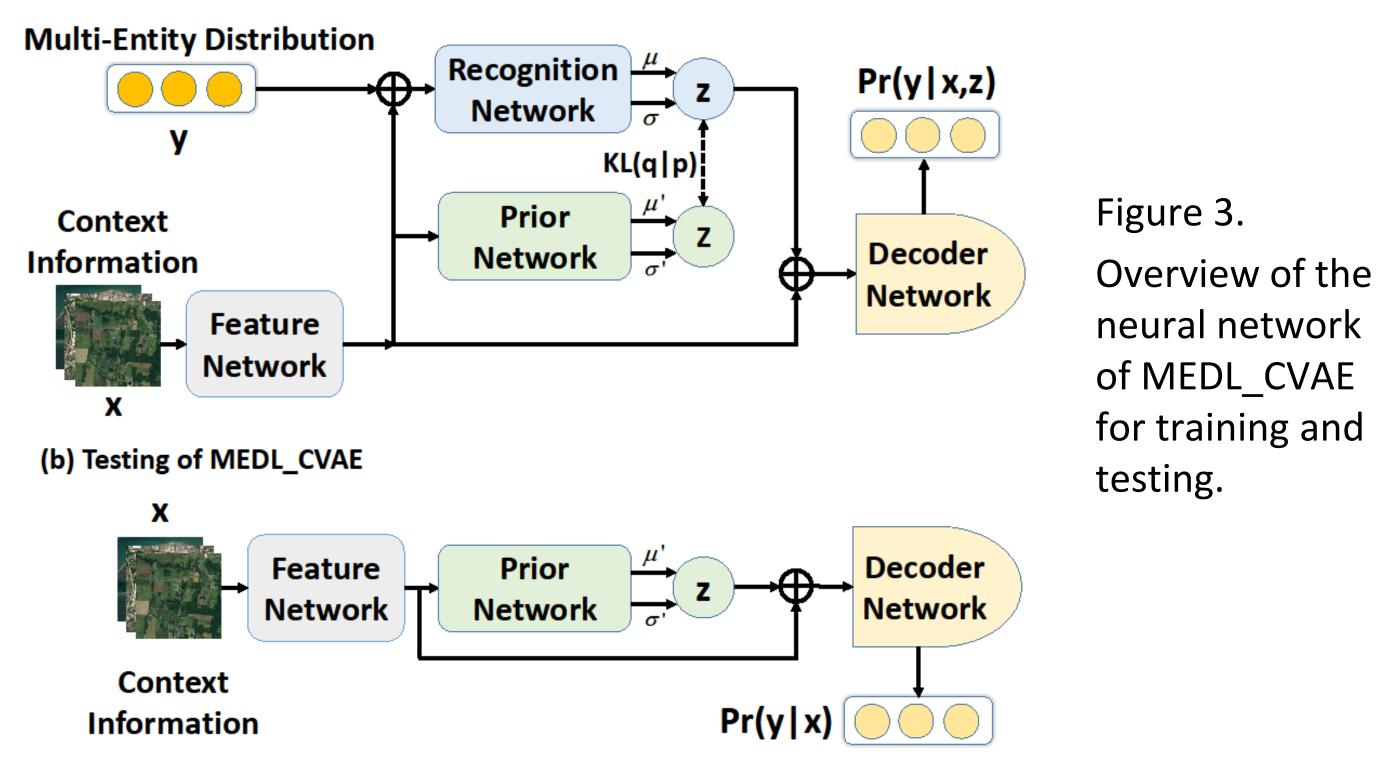


Figure 1: Two computational sustainability related applications for MEDL CVAE. 1) is to model species interactions using the *eBird* data. 2) is a land-scape categorization using *Amazon* satellite images.

Method

Preliminaries

We consider modeling the dependencies among multiple entities on problems with rich contextual information. Our dataset consists of tuples:

 $D = \{(x_i, y_i) | i = 1, \dots, N\}$

 $x_i = (x_{i,1}, \dots, x_{i,k}) \in \mathbb{R}^k$ is a high-dimensional contextual feature vector;

Experiment

Dataset	Training Set Size	Test Set Size	# Entities
eBird	45855	5094	100
Amazon	30383	4048	17

Table 1. the statics of the *eBird* and the *Amazon* dataset.

Method	Neg. JLL	Time (min)		
NLCD+MLP	36.32	2	Method	Neg. JLL
Image256+ResNet50	34.16	5.3 hrs	Image64+MLP	2.83
NLCD+Image256+ResNet50	34.48	5.7 hrs	Hist128+MLP	2.03
NLCD+Hist64+MLP	34.97	3		
NLCD+Hist128+MLP	34.62	4	Image64+CNN	2.16
NLCD+Image64+MLP	33.73	9	Image64+MLP+PCC	2.95
NLCD+MLP+PCC	35.99	21	Hist128+MLP+PCC	2.60
NLCD+Hist128+MLP+PCC	35.07	33	Image64+CNN+PCC	2.45
NLCD+Image64+MLP+PCC	34.48	53	Image64+MLP+MEDL_CVAE	2.37
NLCD+DMSE	30.53	20 hrs	Hist128+MLP+MEDL_CVAE	2.09
NLCD+MLP+MEDL_CVAE	30.86	9		2.03
NLCD+Hist64+MLP+MEDL_CVAE	28.86	20	Image64+CNN+MEDL_CVAE	2.03
NLCD+Hist128+MLP+MEDL_CVAE	28.71	22		
NLCD+Image64+MLP+MEDL_CVAE	28.24	48		

 $y_i = (y_{i,1}, \dots, y_{i,l}) \in \{0,1\}^l$ is a sequence of l indicator variables, $y_{i,j}$ represents whether the j-th entity is observed in an environment characterized by x_i .

The problem is to learn a conditional joint distribution Pr(y|x) which maximizes the conditional joint log likelihood over N data points:

 $\sum_{i=1}^{N} \log \Pr(y_i \mid x_i)$

The probability of each entity's existence are not mutually independent:

 $\Pr(y_i \mid x_i) \neq \prod_{j=1}^{i} \Pr(y_{i,j} \mid x_i)$

Our Approach

We propose MEDL_CVAE to address following two challenges:

- Noisy and potentially multi-modal responses.
- Incorporation of rich contextual information such as satellite images.

Figure2. Our proposed conditional generating process. Given contextual features x_i such as satellite images, we use hidden variables z_i conditionally gen-

erated based on x_i to capture n-

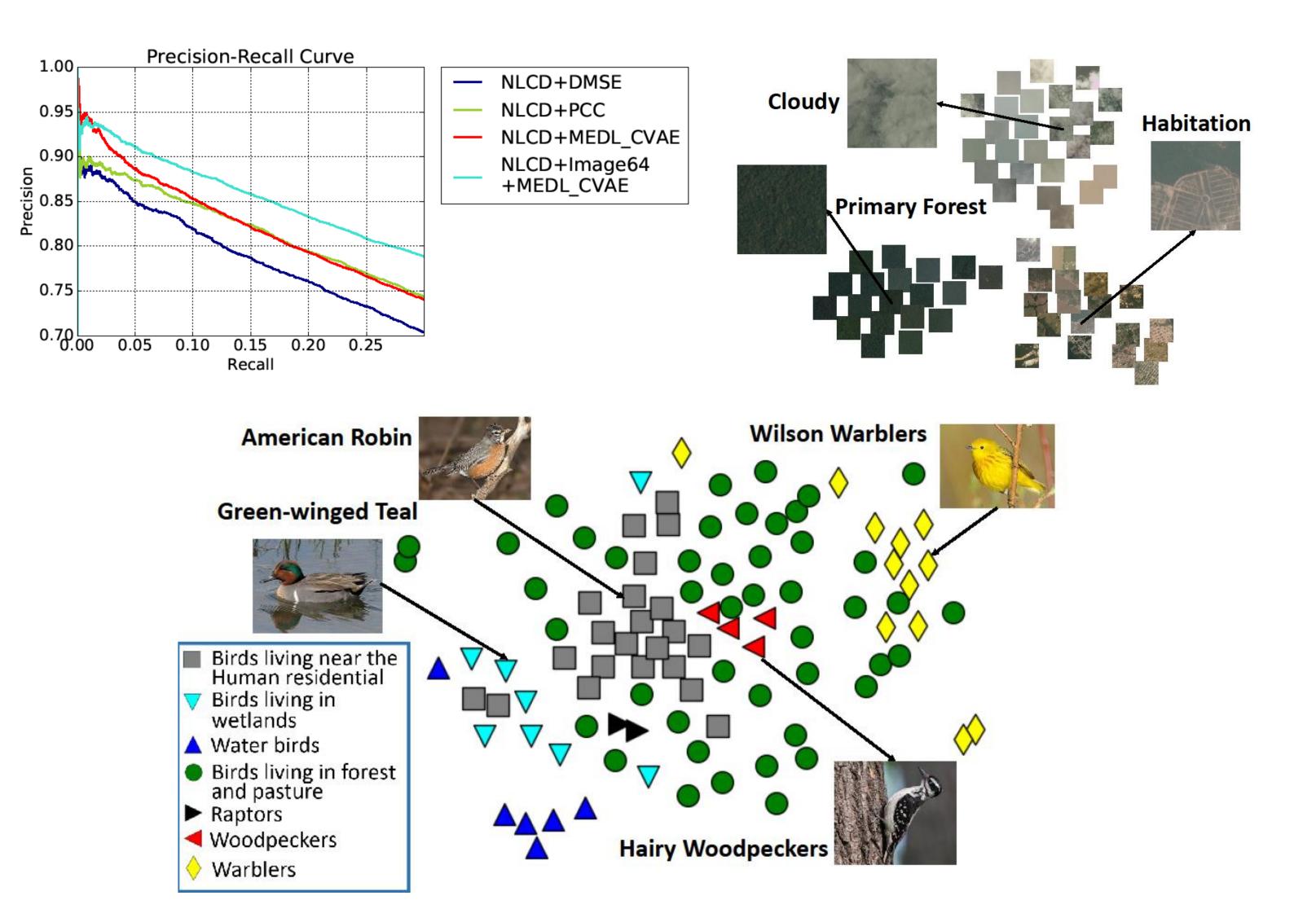
oisy and multi-modal response.

contextual information xi and

hidden variables z_i.

The response y_i depends on both

Table 2. Negative joint log-likelihood and training time of models assuming independence (first section), previous multi-entity dependence models (second section) and our MEDL_CVAE on the *eBird* (left) and *Amazon* (right) test set.



Hidden variable $z_i | x_i \sim N(\mu(x_i), \Sigma(x_i))$ Response: $(y_{i,j} | z_i, x_i) \sim \text{Bernoulli}(p_j(z_i, x_i)), \text{ i.e.},$ $\Pr(y_i | z_i, x_i) = \prod_{j=1}^l p_j^{y_{i,j}} (1 - p_j)^{1 - y_{i,j}}$

The original optimization problem:

$$\max_{\theta_d} \sum_i \log \Pr(y_i | x_i) = \sum_i \log \int \Pr(y_i | x_i, z_i) \Pr(z_i | x_i) dz_i$$

It is intractable because of a hard integral inside the logarithmic function. Based on the following variational equality:

> $\log Pr(y_i|x_i) - D\left[Q(z_i|x_i, y_i)||Pr(z_i|x_i, y_i)\right]$ (6) = $\mathbb{E}_{z_i \sim Q(z_i|x_i, y_i)} \left[\log Pr(y_i|z_i, x_i)\right] - D\left[Q(z_i|x_i, y_i)||Pr(z_i|x_i)\right]$

Figure 4 (top left). Performance of baseline models and MEDL_CVAE on the Amazon dataset.
Figure 5 (top right). Visualization of the posterior z ~ Q(z|x,y) on the Amazon dataset.
Figure 6 (bottom). Visualization of vectors inside decoder network's last fully connected layer.

Acknowledgement: This research was supported by NSF 0832782, 1522054, 1059284, 1356308, ARO grant W911-NF-14-1-0498, the Leon Levy Foundation and the Wolf Creek Foundation.