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Introduction We turn to maximizing the variational lower bound of original log likelihood:

. . . o Q(zi|i, yi) = N(pe (i yi)s Xe(Tis ¥i)).
Multi-Entity Dependence Learning (MEDL) explores conditional correlat-
nax ZEzin(zilm@,yi) log Pr(yi|zi,xi)] —

lons among multiple entities. We propose MEDL_ CVAE, which encodes 0.1.6.
a conditional multivariate distribution as a generating process. The var-
iational lower bound of the joint likelihood can be optimized via a cond-
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itional variational auto-encoder and trained end-to-end on GPUs. (a) Training of MEDL_CVAE
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Figure 1: Two computational sustainability related applications for MEDL _
CVAE. 1) is to model species interactions using the eBird data. 2) is a land- Experiment

scape categorization using Amazon satellite images.

Preliminaries

Dataset | Training Set Size | Test Set Size | # Entities

eBird 45855 5094 100
Amazon 30383 4048 17

Table 1. the statics of the eBird and the Amazon dataset.

We consider modeling the dependencies among multiple entities on prob-
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our MEDL CVAE on the eBird (left) and Amazon (right) test set.
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We propose MEDL CVAE to address following two challenges:
= Noisy and potentially multi-modal responses.

= Incorporation of rich contextual information such as satellite images.
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Figure 4 (top left). Performance of baseline models and MEDL_CVAE on the Amazon dataset.

It is intractable because of a hard integral inside the logarithmic function. . , _ o ,
~igure 5 (top right). Visualization of the posterior z ~ Q(z]|x,y) on the Amazon dataset.

Based on the following variational equality:
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Figure 6 (bottom). Visualization of vectors inside decoder network’s last fully connected layer.




